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a b s t r a c t

The ‘‘field synergy principle”, a theory to approach best convection result proposed by Guo, Tao et al., has
been developing since the end of last century. Besides the principle itself, there have been a lot of studies
about the field synergy including computational approaches and experimental means to demonstrate
and apply this principle. However, an opposite research direction: ‘‘ non-synergy” – how can we obtain
worst convection result – is also worth researching for the theory and practice. Until now detailed studies
have hardly been published in the open literatures. In this paper, a basic theoretical non-synergy research
is presented, some algebraically explicit analytical exact solutions for the governing partial differential
equation set of two-dimensional laminar incompressible full field non-synergy are derived using the
extraordinary methods promoted by the authors, for example, the method of separating variables with
the addition and other hybrid method. The obtained solutions include the conditions with the heat
source, the mass flow source or no any sources. The physical feature of various solutions are discussed
and explained by the means of figures. Besides theoretical meaning, the solutions can be benchmark solu-
tions to develop the computational heat transfer.

� 2009 Elsevier Ltd. All rights reserved.
1. Non-synergy field principle

The convection is one of the very common processes in the
earth. It occurs perhaps everywhere, for example, in the natural
processes, in the production of the industry and the agriculture,
and in the life cycles of all living beings. How to control the convec-
tion processes, for example, to promote or restrain them, is very
important for human beings. In recent years, Guo, Tao et al. [1–3]
proposed the field synergy principle with mathematics, the key is-
sue is that the most effective convection occurs when the move-
ment direction of all convection particles is completely
perpendicular to the isothermals (2-D case) or the isothermal sur-
faces (3-D case). They confirmed this principle using many numer-
ical and experimental studies [4–9], and have applied this principle
to improve some heat transfer apparatuses and obtained excellent
results.

Cai explained and derived again the field synergy principle with
only simplest qualitative thinking, and gave several analytical ex-
act solutions of full field synergy [10]. It is well-known that the
analytical exact solutions have their own theoretical meaning,
many analytical solutions played a key role in the early develop-
ment of fluid mechanics and heat conduction [11,12]. Besides their
theoretical meaning, analytical solutions can also be applied to
check the accuracy, convergence and effectiveness of computation
ll rights reserved.

: +86 10 62575913.
methods, and to improve their differencing schemes, grid genera-
tion techniques and so on. Therefore, the analytical solutions are
very useful to the computational fluid dynamics and heat transfer.

As mentioned by Tao, Guo et al. [3,5], contrary to the field syn-
ergy, there is also the field non-synergy; in this case, the stream-
lines and the isothermals are all located at the same position,
which is also very clear from a qualitative physical thinking. When
all fluid particles flow along the isothermals, there should not be
any convection effects [10]. If neglecting some other small heat
transfer effects such as conduction, it approximates to an adiabatic
case. Such conditions are valuable for the theory and many practi-
cal applications. Therefore, some analytical exact solutions for 2-D
non-synergy will be derived to develop the field non-synergy prin-
ciple and promote its practice.
2. Governing equation set and deriving analytical solutions

For a steady 2-D incompressible laminar flow with constant
kinematic viscosity m and thermal diffusivity a (neglecting gravity
and dissipation heat), the governing equations can be presented
as follows:
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Nomenclature

a thermal diffusivity, m2/s
Cp specific heat, J/(kg K)
ci arbitrary constant
f(y) arbitrary function of y
G mass rate, kg/s
g(y) arbitrary function of y
p pressure, Pa
q heat source, W/m2

u velocity component in x direction, m/s
t velocity component in y direction, m/s
X function of x
x x coordinate
Y function of y

y y coordinate

Greek symbols
m kinematic viscosity, kg/(m s)
q density, kg/m3

h temperature, K

Subscripts
p function for pressure
u function for velocity component u
t function for velocity component v
h function for temperature
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Considering the condition of full field non-synergy, the follow-
ing equation must be added for the full convection field:

t=u ¼ � @h
@x

�
@h
@y
: ð5Þ

Commonly, q (heat source) and G (mass flow source) are given
functions, then there are only four unknown variables in the five
equations abovementioned, they are velocity components u and
t, pressure p and temperature h; then the equation number is more
than the number of the independent variables, it is not properly
identified and generally unable to obtain solutions. Then q or G
has to be an unknown variable to meet the number of equations.
Actually, it is difficult to find a fully field non-synergy condition
without any artificial measures. If some measures are adopted to
control the field, such as adding appropriate heat source or mass
flow source, the field non-synergy convection cases can be ob-
tained. Therefore, q or G in the governing equation set has to be
recognized as a control measure and an important variable.

The governing equation set (2)–(5) is composed of nonlinear
simultaneous partial differential equations, which are not easy to
be solved. In order to obtain algebraically explicit exact analytical
solutions for understanding the results distinctly, the following
methods have been adopted: The method of separating variables
with addition proposed by Cai [13,14] is applied. It is assumed that
the unknown solution can be expressed as f(x,y) = X(x) + Y(y), in-
stead of f(x,y) = X(x)�Y(y) in the common method of separating vari-
ables. Since the main motivation of deriving analytical solution
here is to obtain some possible explicit analytical solutions to de-
velop the non-synergy theory and promote numerical heat transfer
(NHT), but not to find a specified solution for the given boundary
conditions. Therefore, the boundary conditions are undetermined
before deriving the explicit analytical solution and deduced from
the solution afterward. It makes the derivation procedure easier.
Actually, the basic solutions of incompressible fluid dynamics in
early time did adopt such methods. The abovementioned ap-
proaches have been successfully applied to derive many meaning-
ful algebraically explicit analytical solutions for the heat and mass
transfer discipline [15–27].

In fact, all solutions given in this paper can be proven easily by
substituting them into the governing equation set.

If the method of separating variables with addition is applied to
all variables in Eqs. (1)–(5), the following equation set can be
obtained.
u ¼ Xu þ Yu; ð6Þ
t ¼ Xt þ Yt; ð7Þ
p ¼ Xp þ Yp; ð8Þ
and h ¼ Xh þ Yh; ð9Þ

Therefore, Eqs. (1)–(5) can be rewritten as:

X0u þ Y 0t ¼ Gðx; yÞ; ð10Þ
ðXu þ YuÞX 0u þ ðXt þ YtÞY 0u ¼ �X0p=qþ mðX 00u þ Y 00uÞ; ð11Þ
ðXu þ YuÞX 0t þ ðXt þ YtÞY 0t ¼ �Y 0p=qþ mðX00t þ Y 00tÞ; ð12Þ
ðXu þ YuÞX 0h þ ðXt þ YtÞY 0h ¼ aðX00h þ Y 00hÞ þ qðx; yÞ; ð13Þ
and ðXu þ YuÞX 0h ¼ �ðXt þ YtÞY 0h: ð14Þ

Of course, a hybrid approach with both separating methods can
be also applied for the equation set with multiple unknown
variables.

3. Analytical full field non-synergy solution with heat source (I)
– using the method of separating all variables with addition

To control the 2-D heat transfer field, a distributed heat source
can easily be set in practice, for example, the radiation. Then, a
simple non-synergy solution with a heat source only is derived
firstly; after that, its simplified form with very clear physical mean-
ing is given in the next paragraph.

For ease of derivation, in this work, we set G = 0.
For such case, Eq. (10) can be separated easily as:

X0u ¼ c1 ¼ �Y 0t; ð15Þ
then Xu ¼ c1xþ c2 ð16Þ
and Yt ¼ c3 � c1y ð17Þ

If Xt = c4, then Eq. (11) can be separated as

c2
1xþ c1c2 þ X0p=q ¼ c5 ¼ �c1Yu � ðc3 þ c4ÞY 0u þ c1yY 0u þ mY 00u: ð18Þ

The right-hand side of Eq. (18) can be analytically solved only
when c1 = 0. Since the aim of this paper is to find analytical exact
solutions, c1 = 0 is chosen further. Then from left-hand side and
right-hand side of Eq. (18), following results can be obtained:

Xp ¼ p0 þ c5qx; ð19Þ
and Yu ¼ ½m=ðc3 þ c4Þ�2 exp½ðc3 þ c4Þðyþ c6Þ=m�

� c5y=ðc3 þ c4Þ: ð20Þ

Since X0u = Y0t = 0, we can obtain Y0p = 0 from Eq. (12). It means
that Yp is a constant. According to Eqs. (8) and (19), it can be re-
garded as zero:

Yp ¼ 0: ð21Þ
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Substituting above results (including c1 = 0) into Eq. (14) yields:

½m=ðc3 þ c4Þ�2 exp½ðc3 þ c4Þðyþ c6Þ=m� � c5y=ðc3 þ c4Þ þ c2

n o 1
Y 0h

¼ c7 ¼ �ðc3 þ c4Þ
1
X 0h
:

ð22Þ

The left-hand side of Eq. (22) can only be analytically solved
when c2 = 0 = c5, we use such simplification further, then following
two solutions are derived (since c3 + c4 always appears together in
the final results, it is chosen c3 on behalf of c3 + c4 in following
equations)

Yh ¼ m3 exp½c3ðyþ c6Þ=m�=ðc7c3
3Þ; ð23Þ

Xh ¼ h0 � c3x=c7: ð24Þ

Substituting above solutions into Eq. (13) yields:

q ¼ �amgðyÞ=ðc3c7Þ; ð25Þ
where gðyÞ ¼ exp½c3ðyþ c6Þ=m�: ð26Þ

Combining Eqs. (10)–(14) with all previous results in this para-
graph, the final solutions are

u ¼ ðm=c3Þ2gðyÞ; ð27Þ
t ¼ c3; ð28Þ
p ¼ p0; ð29Þ
h ¼ h0 � c3x=c7 þ ðv=c3Þ3 � gðyÞ=c7 ð30Þ
q ¼ �avgðyÞ=ðc3c7Þ: ð31Þ

where g(y) has been given in Eq. (26). As mentioned before, the
boundary conditions are determined after successfully deriving
solutions. The conditions can be obtained by substituting the geom-
etries of boundaries into the solutions. For example, if considering
the boundary is a square with unit width, the boundary conditions
of the solution of this paragraph could be:

y ¼ 0; u ¼ ðm=c3Þ2 expðc3c6=mÞ;
h ¼ h0 � c3x=c7 þ ðm=c3Þ3 � expðc3c6=mÞ=c7;

and

y ¼ 1; u ¼ ðm=c3Þ2 exp½c3ð1þ c6Þ=m�;
h ¼ h0 � c3x=c7 þ ðm=c3Þ3 � exp½c3ð1þ c6Þ=m�=c7;

in addition,

x ¼ 0; u ¼ ðm=c3Þ2 exp½c3ðyþ c6Þ=m�;
h ¼ h0 þ ðv=c3Þ3 � exp½c3ðyþ c6Þ=m�=c7;

x ¼ 1; u ¼ ðm=c3Þ2 exp½c3ðyþ c6Þ=m�;
h ¼ h0 � c3=c7 þ ðm=c3Þ3 � exp½c3ðyþ c6Þ=m�=c7:

In the whole field t = c3 and p = p0. The distribution of q can be
recognized as a source, being excluded in boundary conditions. The
boundary conditions of other solutions given in the following para-
graphs can be determined similarly; each solution corresponds to
its own boundary conditions.

The physical description of the solution with constants c3 < 0,
c7 > 0 and c6 = 0 is shown in Figs. 1 and 2. The first one presents
the flow between two infinite porous plates parallel to x abscissa
moving along the abscissa direction with different speeds, which
are given by Eq. (27) with y = 0 and y = 1 to satisfy the non-slip
condition in the viscous flow. The flow field between the porous
plates is a non-synergy field and described by Eqs. (27)–(29), the
x-direction speed u distributes with 1-D exponential function of
y, the y-direction speed t is a constant c3 in the whole field includ-
ing in the porous plates. The distribution of heat source q is similar
to u; when c3 ¼ �c7

m
a, the curves of q completely coincides with

that of u. The temperature distribution is a 2-D function: linear
along x-direction and exponential in y-direction. The isothermals
have to completely identical to the streamlines, the latter can be
derived by dy/dx = t/u and the result is x = {(m/c3)3 exp [c3(y + c6)/
m]�c8}/c3. Both streamlines and isothermals in this considered field
are shown in Fig. 2. The heat source distribution is a 1-D exponen-
tial function of y.

4. Analytical full field non-synergy solutions with heat source
(II) – concise solution family using the method of separating
variables with addition

The physical feature of the solution in previous paragraph is a
little bit complicated (with two parallel moving porous walls as
boundary). In this paragraph, a very simple solution with two infi-
nite parallel steady solid walls as boundary is given.

If the constants c1, c3 and c4 in Eqs. (15)–(18) are equal to zero,
then it can be concluded that t = 0 and u is a quadratic function of
y. Then the velocity field can express as:

u ¼ c1y2 þ c2; ð32Þ
and t ¼ 0: ð33Þ

It corresponds to the following assumptions
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Xu ¼ c2; ð34Þ
Yu ¼ c1y2; ð35Þ
Xt ¼ Yt ¼ 0; ð36Þ

in Eqs. (6)–(14), and satisfies Eq. (10) with G = 0.
Under such assumptions, it is easy to obtain following result

from momentum equations Eqs. (11) and (12):

Xp ¼ 2c1qmx; ð37Þ
Yp ¼ po: ð38Þ

Then the pressure formula is

p ¼ po þ 2c1qmx: ð39Þ

Since t = 0, then from Eq. (14), Xh
0 = 0 and Xh is a constant. Using

the same equation, it is concluded that Yh can be an arbitrary func-
tion of y, it means

h ¼ arbitrary f ðyÞ: ð40Þ

At last, the formula of heat source q (Eq. (13)) can be easily
solved as

q ¼ �af 00ðyÞ ¼ �ah00ðyÞ: ð41Þ

Eqs. (32), (33), (39)–(41) represent a family of simple field syn-
ergy solutions and which number is infinite since there is an arbi-
trary function f(y). However, the velocity distribution – parabolic
curve along y-direction is the same for all solution family, similar
to the classical 2-D Poiseuille flow; the pressure distribution along
x-direction is also similar to the Poiseuille flow. The main distin-
guishing feature is the heat source distribution, it controls the dis-
tributions of the temperature and guarantees the field non-
synergy, and its function has an evident relationship to the temper-
ature distribution [Eqs. (40) and (41)]. Among the variables, flow
velocity u, temperature h and heat resource q are functions of y,
and pressure p is function of x.

Now, we point out some representative functions of f(y) and
their effects [the velocities and pressure maintain their expressions
as Eqs. (32), (33), (39)].

Of course, we only give some simplest but perhaps useful exam-
ples from infinite cases.

4.1. Solution with f(y) = Const

If f(y) = Const., then h = Const. and q = 0, no heat transfer occurs.
The solution is approximate to the Poiseuille flow, which is mean-
ingless to the field non-synergy principle.

4.2. Solution with linear temperature distribution

If f(y) is a linear function, for example f(y) = c3y + c4, then

h ¼ c3yþ c4; ð42Þ
and q ¼ 0: ð43Þ

Actually, it is the common Poiseuille flow with linear temper-
ature distribution along y direction. Indeed, such case has been
mentioned by Tao et al. [5] as the example of the non-synergy.
The simple physical feature of this solution is shown in Fig. 3.
By the way, it is worth mentioning a special character of this
non-synergy case: the non-synergy condition can be obtained
without any external sources; it is unable for the full field syn-
ergy condition [10]. Perhaps, it is the best non-synergy (adia-
batic) approach to lower the total heat dissipation in a laminar
flow region. Actually, there are heat injection along upper wall
and heat ejection along lower wall by conduction with equal
amount of heat, and no heat source. However, there is no con-
vection, i.e., the non-synergy.
4.3. Solution with even heat resource

For such case, q = qo = const., then from Eq. (41), it is obtained:

h ¼ �qoy2=2aþ c3yþ c4: ð44Þ

The temperature is a quadratic function of y. A schematic figure
of this solution is given in Fig. 4. Similar to previous sub-paragraph,
there is no convection, i.e., non-synergy, which is different from
the solution in previous sub-paragraph, there is heat ejection or
injection with different values of constants along both upper and
lower walls by conduction, but there is even heat source distrib-
uted around all flow regions to offset the heat ejection. The total
effect is the non-synergy also but with conduction.

4.4. Solutions with similar h and q distribution

If the f(y) in Eq. (40) is c3 sin (c4y) + ho, we can obtain:
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h� ho ¼ c3 sinðc4yÞ; ð45Þ
and q ¼ ac2

4 � c3 sinðc4yÞ ¼ ac2
4ðh� h0Þ: ð46Þ

The distributions of temperature and heat resource are similar;
the distribution of h for this solution is roughly similar to Fig. 4. We
omitted here to shorten the space.

Another solution example is given as:

h� ho ¼ c3 sinhðc4yÞ ð47Þ
and q ¼ �ac2

4 � c3 sinhðc4yÞ ¼ �ac2
4ðh� h0Þ: ð48Þ

The curves of temperature and heat source are presented in
Fig. 5 with c2

4 ¼ 1=a. The main difference between Eq. (46) and
(48) is that in the former case heat is ejected but the latter is in-
jected. Perhaps the heat injection is easier to accurately set in prac-
tice than the heat ejection.

4.5. Other possible solutions

Using Eqs. (32), (33), (39)–(41) and choosing different h = f(y),
infinite number of field synergy solutions can be derived easily,
their velocity and pressure distributions are similar to the Poiseu-
ille flow, only the temperature distribution h(y) and corresponding
heat source distribution are different. By the way, we have not yet
found some other solutions, which have physical character more
clear than that in Figs. 3–5. However, perhaps new solutions could
be found later from the practical application. At least, the solutions
given in this paragraph are based on the Poiseuille flow, it is a very
popular case.

5. Analytical full field non-synergy solution with heat source
(III) – using the hybrid method of separating variables

Indeed, the method of separating variables with addition have
been successfully applied to derive many analytical solutions,
however, for simultaneous equations with two or more variables,
it is not necessary to apply the same separating approach for differ-
ent variables. For example, some variables are treated with the
method of separating variables with addition, and the others are
treated with the common method of separating variables with
multiplication. In this paragraph, it is assumed that

hðx; yÞ ¼ Xh � Yh: ð49Þ
y

u

x

,θ q

Fig. 5. The physical feature of Eqs. (32), (33), (47), (48).
instead of Eq. (9), but other variables are assumed as the same as
before Eqs. (6)–(8).

In this case, the Eqs. (10)–(12) are also effective, but the Eq.(14)
has to be changed to

ðXu þ YuÞX0hYh ¼ �ðXt þ YtÞXhY 0h; ð50Þ

then the velocity and pressure distributions may as the same as Eqs.
(27)–(29). But the temperature distribution should be derived by
Eq. 50 with known velocity distribution Eqs. (27) and (28). The
expression is

ðm=c3Þ2 exp½c3ðyþ c6Þ=m�X0hYh ¼ �c3XhY 0h: ð51Þ

After separating variables, following two ordinary differential
equations are obtained:

�X0h=Xh ¼ c7 ¼ Y 0h=Yh
1

ðm2=c3
3Þ exp½c3ðyþ c6Þ=m�

: ð52Þ

The final result of Eq. (52) is

h ¼ h0 þ c8 expð�c7xÞ � exp c7c3
2 exp½c3ðyþ c6Þ=m�=m

� �
: ð53Þ

The heat source q can be derived easily by substituting the
expressions of u, t and h [Eqs. (23), (24), (53)] into Eq. (4).

The physical feature of this solution is very similar to that pre-
sented by Figs. 1 and 2 given in paragraph 3, only the heat source q
here is a 2-D function. The graphical expressions are not given here
to shorten the space of this paper.

Besides obtaining an exact solution, another more meaningful
result of this paragraph is the effectiveness of new method of sep-
arating variables for partial differential equations. It has to be
developed further.

6. Analytical full field non-synergy solutions with mass flow
source – using the method of separating variables with addition

All the solutions given in abovementioned three paragraphs
only apply the heat source to arrive field synergy. In this para-
graph, solutions utilizing mass flow sources only to arrive field
non-synergy are derived. However, utilizing pure mass flow
sources is commonly more complicated in practice compared to
heat sources. For example, the temperature of each particle of
the mass source has to be the same as the temperature at the
injecting particle positions, otherwise it is difficult to accurately
control the temperature field (there is no problem for ejection);
in addition, the particle motion would commonly disturb the flow
field also. Nevertheless, deriving some analytical solution is helpful
for field non-synergy principle and how to promote the field non-
synergy.

Different from the above paragraphs, in the following deriva-
tion, q = 0 and G – 0 is adopted in the governing equation set.

Omitting the trial and error procedure, the brief derivation pro-
cedure is summarized as:

Let Yu ¼ Const: ¼ c1; ð54Þ
Xt ¼ Const: ¼ c2: ð55Þ

Then, the governing Eqs. (11)–(14)) can be rewritten as:

ðXu þ c1ÞX0u ¼ �
1
q

X0p þ mX00u; ð56Þ

ðYt þ c2ÞY 0t ¼ �
1
q

Y 0p þ mY 00t; ð57Þ

ðXu þ c1ÞX0h þ ðYt þ c2ÞY 0h ¼ aðX00h þ Y 00hÞ ð58Þ
and ðXu þ c1Þ=ðYt þ c2Þ ¼ �Y 0h=X0h ð59Þ

After separating variables, we can obtain the following
expressions:
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X0p ¼ q �ðXu þ c1ÞX0u þ mX00u
� �

; ð60Þ
Y 0p ¼ q �ðYt þ c2ÞY 0t þ mY 00u

� �
; ð61Þ

aX00h � ðXu þ c1ÞX0h ¼ �c3 ¼ ðYt þ c2ÞY 0h � aY 00h ð62Þ
and ðXu þ c1ÞX 0h ¼ c4 ¼ �ðYt þ c2ÞY 0h ð63Þ

From Eqs. (62), (63), following results can be deduced:

h ¼ ðc4 � c3Þx2=ð2aÞ þ c6xþ c7 þ ð�c4 þ c3Þy2=ð2aÞ þ c8y: ð64Þ

Then the velocities can be derived from Eq. (59) as:

u ¼ c4a=½ðc4 � c3Þxþ c6a�; ð65Þ
t ¼ �c4a=½ð�c4 þ c3Þyþ c8a�; ð66Þ

and from Eqs. (60), (61) we can obtain the pressure expression:

p ¼ p0 � c4qa ½c4aþ 2vðc4 � c3Þ�=½ðc4 � c3Þxþ c6a�2
n

þ �c4aþ 2vð�c4 þ c3Þ�=½ð�c4 þ c3Þyþ c8a�2
h o

=2 ð67Þ

In addition, the mass source G, which is derived from Eq. (1),
can be expressed as:

G ¼ �c4a ðc4 � c3Þ=½ðc4 � c3Þxþ c6a�2 þ ðc4 � c3Þ=½ð�c4 þ c3Þyþ c8a�2
n o

ð68Þ

If c4 P c3 and c4 > 0, then G < 0, the mass flow source is negative,
the mass ejects from the system; as mentioned before, this condi-
tion is easier to be achieved in practice.

However, no evidently physical feature of such solutions has
been found, this solution perhaps can only be a benchmark solu-
tion for the non-synergy CHT.

The Eqs. (64)–(68) are rather complicated. If assuming c3 = c4

and c6 = c8 = 1, the equation set can be simplified as:

u ¼ c4 ¼ const: ð69Þ
t ¼ c4 ¼ const: ð70Þ
P ¼ p0 ¼ const: ð71Þ
h ¼ xþ yþ c7 ¼ hðx; yÞ ð72Þ
G ¼ 0 ð73Þ

The streamlines (and isothermals) can be introduced by

dy
dx
¼ t

u
ð74Þ

The final result is

y ¼ �xþ c9: ð75Þ

The physical feature of the simplified solution Eqs. (69)–(73) is
presented in Fig. 6. In fact, it is a parallel flow between two parallel
infinite long solid walls, an extremely simple case. If the coordi-
nates are anticlockwise rotated by 45�, it is similar to the former
case, but the distributions of velocity and temperature are
different.
7. Summary

1. The field synergy principle – an approach to find out best con-
vection condition – has been successfully proposed, demon-
strated and applied, it is worth studying the opposite research
direction – the non-synergy – to find out worst convection
condition.

2. A basic research on the non-synergy is accomplished: several
algebraically explicit analytical exact solutions are derived for
steady 2-D incompressible laminar flow. Such solutions have
their own theoretical meaning and can be the strict benchmark
solutions to promote the computational heat transfer. Accord-
ing to the knowledge of authors, they are the only analytical
exact solutions for the non-synergy.

3. The derived solutions include conditions with heat source, mass
flow source and without any source, some physical feature of
the solutions are discussed and explained by figures.

4. For the very complicated partial differential equation set of the
non-synergy, the derivation method mainly adopts some
extraordinary approaches successfully applied by the authors
recently, such as the method of separating variables with addi-
tion and hybrid method. The derivation results show again that
these methods are very effective.
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